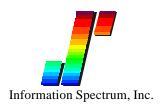


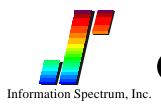
5th Annual Systems Engineering Conference



The Modular Open Systems Approach: A Prescription for Geriatric Weapon Systems

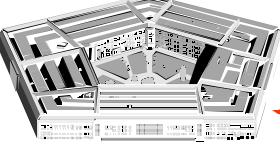
Tampa, FL 23 October 2002

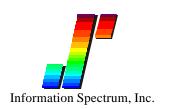
Glen T. Logan, Lt Col, USAF OUSD(AT&L)/OSJTF (703) 602-0851 x112 glen.logan@osd.mil


Charles R. Hurst Information Spectrum, Inc. (937) 256-9933 hurscr@ispec.com

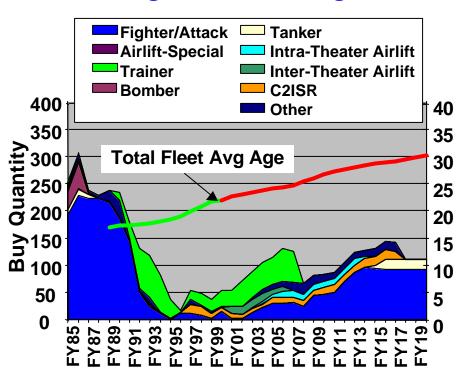
Agenda

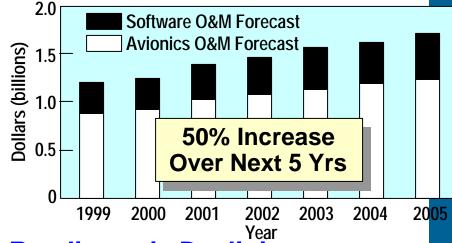
- The Aging Weapon Systems Problem
 - Electronics Marketplace Status
- MOSA: Enabler for Defense Transformation
- Current Activities
- Avionics Planning and Execution (AVPLEX)
- Summary


Why We Must Rely on the Commercial Marketplace...

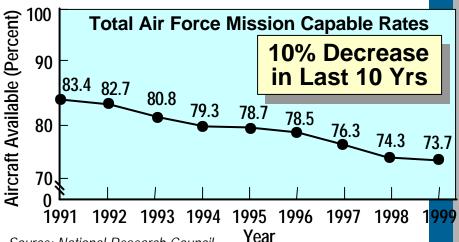


DOD no longer "drives" development. Instead, it must use what industry has developed for commercial applications.

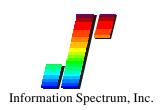

Military Trends The Aging Aircraft Problem



Aircraft Age is Increasing...



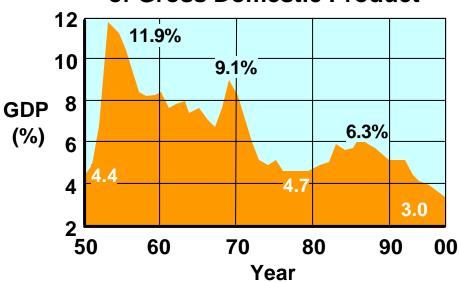
Average Age of USAF Fleet is 22 Years!


O&M Costs are Increasing...

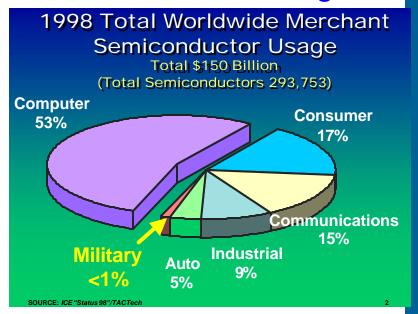
Readiness is Declining...

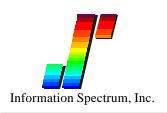
Source: National Research Council Committee on Aging Avionics in Military Aircraft, Final Report dated May 2001

Military Trends Losing Market Leverage



Defense Spending is Declining...

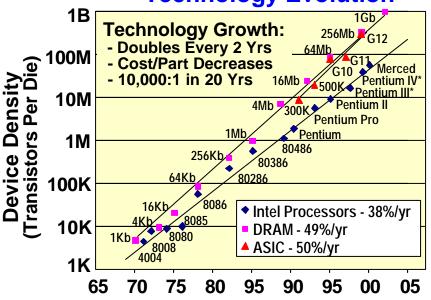

Defense Outlays As a Share of Gross Domestic Product

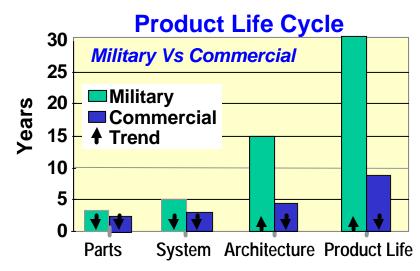

DOD Budget (as % of GDP) is at the Lowest Level Since After WWII!

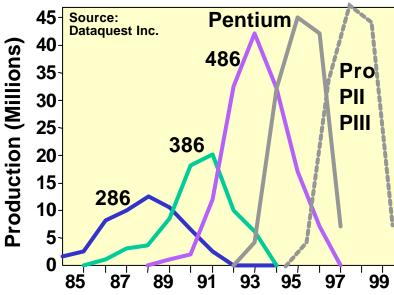
Source: Air Force Magazine, April 1997 (data from US Department of Defense)

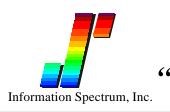
Market Share is Decreasing...

- **DOD Has Minimal Impact in the Electronics Industry**
- **Obsolescence is Market Driven**
 - It Won't Go Away
 - -We Can't Change The Environment
- **DMS Results in Unaffordable NRE**

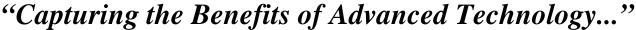

Commercial Technology Trends Reduced Cost & Cycle Time







Shorter Product Lifetimes

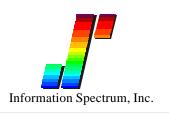

Time to Obsolescence (Years)

Avionics Architecture Evolution

Federated Systems

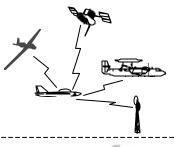
Integrated Subsystems

Total Systems Integration



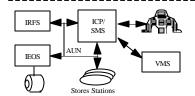
1970 1980 1990 2000 2010

- 12 Unique Processors
- 12 Software Languages (Ada High Order Language & Assembly Languages)
- Unique Executive (OS) in Each Subsystem
- No Software Reuse
- •>12 Unique Data Busses
- Box Level Redundancy


- 8 Unique Processors
- 4 Software Languages
 (Ada High Order Language
 & Assembly Languages)
- Initial Distributed Real-Time OS Developments
- Limited Software Reuse
- 8 Unique Data Networks
- Module Level Redundancy

- 1-2 Unique Processors
- 1 Common High Order Software Language & Object Oriented Design
- Distributed OS with Standard Interfaces
- Significant Software Reuse
- 1 Common Data Network
- Highly Fault Tolerant

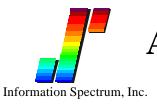
System of Systems Example: JSF Architectural Hierarchy



Level 1: Force Structure/ System of Systems

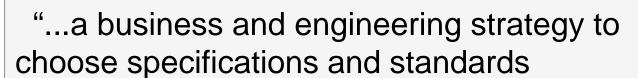
Level 2: Weapon System/ JSF

Level 3: Major Subsystem/ Avionics Suite


Level 4: Functional Area/ Integrated Core Processing

Level 5: Hardware/Software Building Block

Level 6: Hardware/Software Component



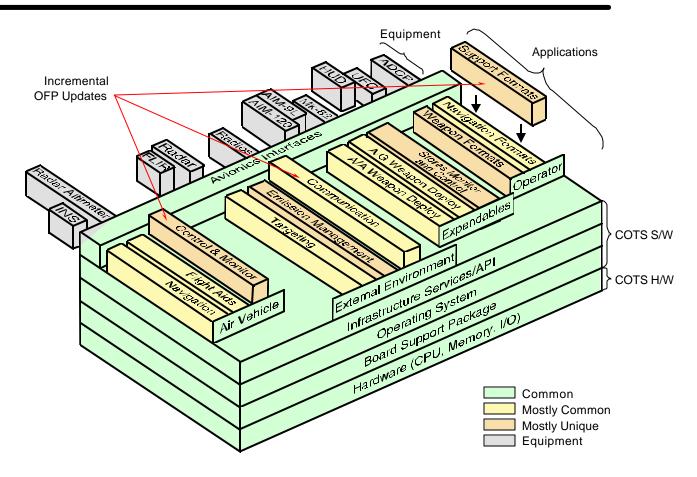
A Modular Open Systems Approach is...

adopted by industry standards bodies or

de facto standards (set by the market place)

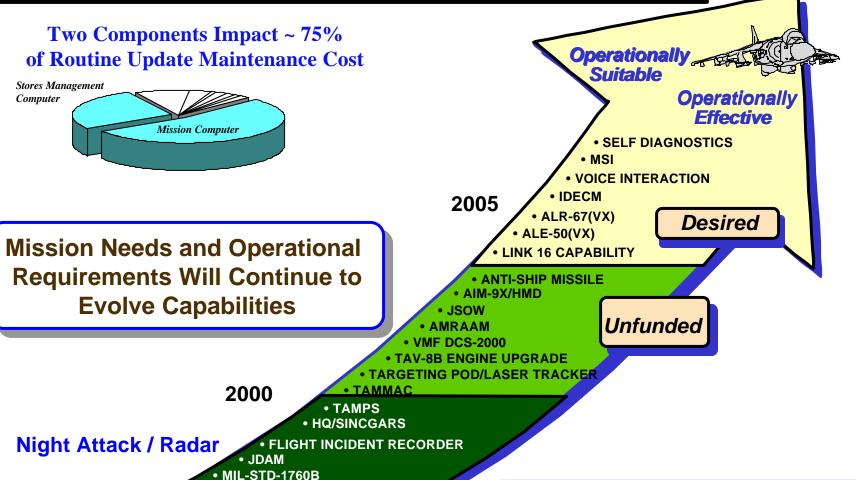
for selected systems interfaces (functional and physical), products, practices, and tools."

> DOD 5000.2-R 23 March 1996



Open Interfaces Isolate Hardware and Software Components

The Layered, Object-Oriented Design Provides O&S Savings by Facilitating Reusable Applications and Permitting Software Changes and Hardware Updates With Minimal Retesting


Open Systems Pioneer:

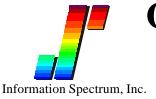
AV-8B Open Systems Core Avionics Requirements

DIGITAL FLAP CONTROLLER

Funded

VIDEO FATIGUE DATA RECORDER

CMWS/ASTE/ALE-47


• OSCAR

• ARC-210

• ATHS

1996

AV-8Bs Must Remain Operationally Capable Through 2023

Open System Architecture for Legacy Aircraft (OSALA)

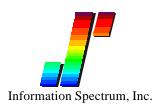
Open Systems ... Progress Towards Affordable Legacy Weapon Systems

Open Interface Standards Are Now in Production Plans (F-16 Block 60, UAE F-16s)

Benefits ...

... Commercial Practices

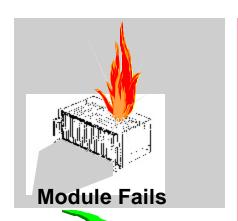
- "24-Month" Production F-16 Aircraft
- \$10M Savings on Current Contracts
- \$10M Savings on Future Contracts

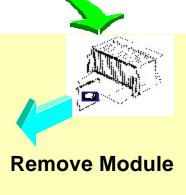

... Capacity Improvements

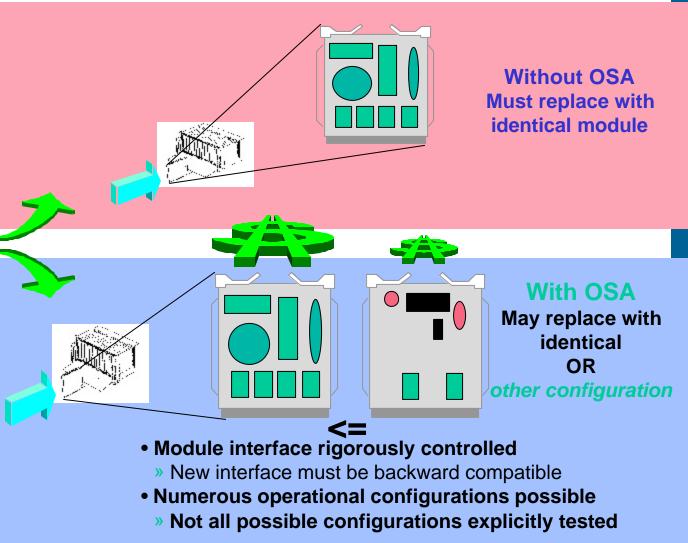
- 50 fold Increase in Network Capacity
- 20 fold Increase in Processor Speed

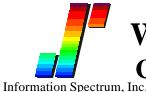
... O&S Reductions

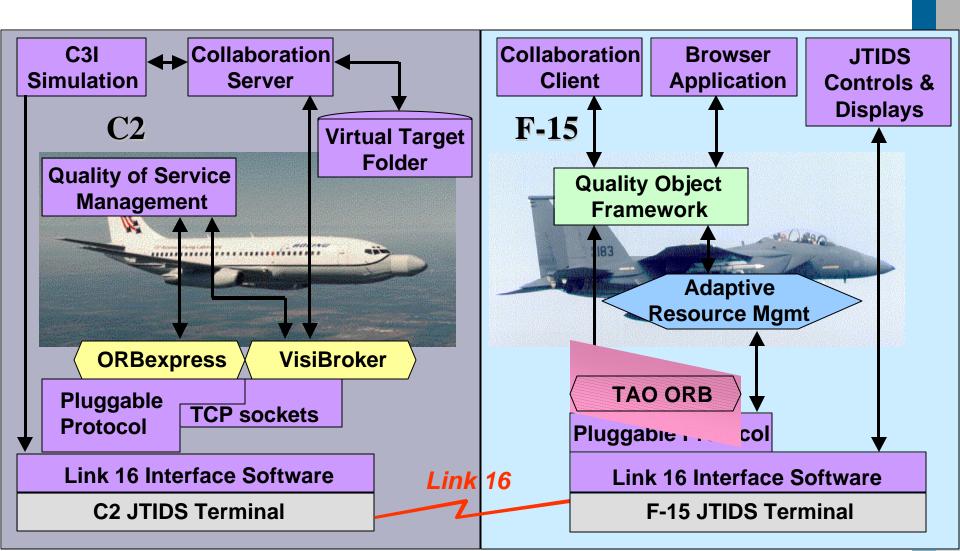
• 10% Savings in Operations & Support

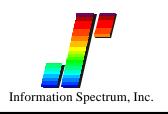



Logistics Support Considerations: Module Replacement or Upgrade?



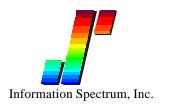




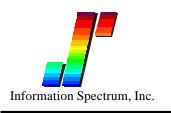


Weapon System Open Architecture (WSOA): Collaborative Time Critical Target Prosecution Demo

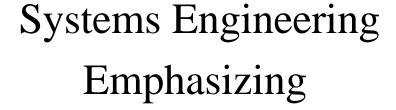
Other MOSA Activities

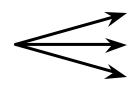

- Acquisition Program Support to various programs and initiatives, e.g., AF Viable Combat Avionics, Navy's Total Ship Open Systems Architecture (TOSA), Army's WSTAWG
- MOSA Industry Steering Group hosted by the National Center for Advanced Technologies
- The Open Group Real-Time and Embedded Systems Forum

Open Systems Application Strategy: Avionics Planning and Execution (AVPLEX)

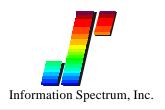

- Uniqueness of Avionics recognized throughout AF
 - Common Avionics in ASC/SM
 - Eagle Look Report
 - Original Aging Avionics Tasking
 - CSAF Tasking for Affordable Avionics
 - QAPR Results
 - NCAT Affordable Avionics Initiative
 - Viable Combat Avionics
 - National Research Council Aging Avionics Report
- Avionics presents a different problem set and has a different goal than other elements of the aging aircraft

Requirements Analysis

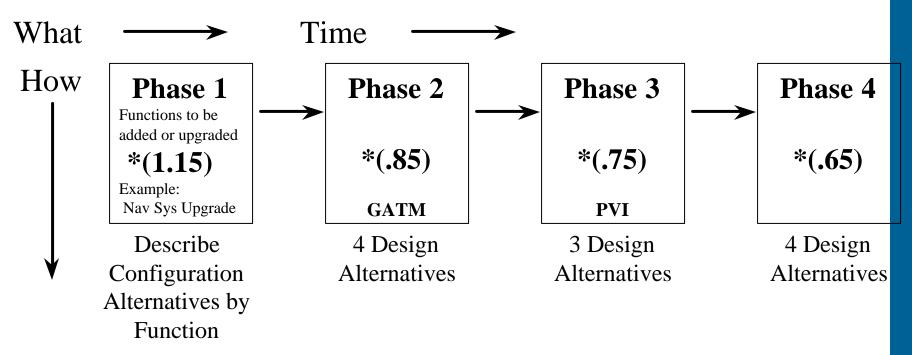


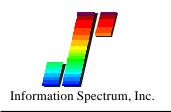

- Formalized in User Documents
 - Mission Need Statement (MNS)
 - Operational Requirements Document (ORD)
- Key Considerations
 - Flexibility/Growth (Long Term Outlook)
 - Mission Changes and External Influences, e.g.,
 National Airspace Requirements
 - Performance in Lieu of Military Specifications
 - Open Systems
- User Involvement Must be Continuous

AVPLEX Process Elements



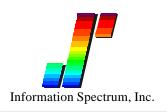
Migration Strategy Life Cycle Cost Open Systems


- Requirements
- Migration Strategy
- Architecture Alternatives Development
- Life Cycle Cost Estimates
- Analysis of Alternatives
- Modification Program Approval
- Solicitations and Source Selection


Migration Strategy

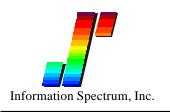
A Plan for Managing Avionics Upgrades

^{*}First system may cost more to set stage for later cheaper, faster modifications.

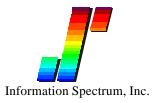


Why is Avionics Unique?

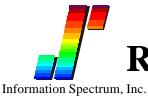
- Avionics upgrade goal is to add new capability
 - New capability for changing threats or PVI
 - National or international airspace mandates
- Goal of airframe or other aging aircraft systems is maintaining or extending service life
- Pace of technology change in avionics is order of magnitude greater that airframe or other systems
- Greater variance in avionics depending on design age


Needs a tailored approach because of uniqueness

Other Considerations

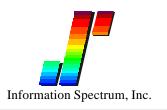

- Acquisition managers must acquire avionics from a different perspective:
 - Tell the offerors to address change in a roadmap context
 - Make ease of change a key element of a best value evaluation of offers
 - Select based on ease of change and long term ownership costs.
- Integration into legacy system can represent significant challenges: i.e. Software and DMS/OP issues

Other Considerations (2)


- Performance Based Requirements
 - Provides greater design trade latitude to industry
 - Adjustment to this business approach has been difficult for both government and industry
 - Industry familiar with Military Specs & Stds
 - Government understanding of how to specify performance
- Performance requirements need to be specified based on mission requirements and supportability
 - Needs to be an element of program definition

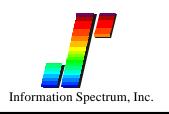
Conclusions that Impact Organization

- VCA is a business issue as well as a technology approach.
 Challenge is integration of commercial items into new environment
- Performance based acquisition means new ways to specify and evaluate requirements
- Avionics upgrades must be evolutionary, incremental and to be cost effective must be based on a migration strategy
- Avionics support methods are changing and will rely more on industry for aircraft system and component repair
- Process orientation change can confuse users & industry



Recommended Aging Avionics Approach

Platform Up rather than Common Down


- Focus has been and needs to remain focus on platform migration strategies or Integrated Change Roadmaps
- "Embryonic" process recognized by NRC and recommended to continue
- Core Avionics team making progress and needs to remain as a unit to continue the synergy
- Cross-cutters need to be based on the Integrated Change Roadmaps (ICRs)

The Bad News is.....

- The pace of process change is glacial while the technology change continues to accelerate.
- Roles and relationships between industry and the government are still evolving and not fully understood
- Integration remains the frequently misunderstood element

And the Good News Is....

- Apparent consensus on the need for incremental, integrated approach to Avionics planning and execution
- Definitional battles have slowed saving energy for the real issues
- Policies and processes being put in place to execute the needed changes
- Organizations to help Program Offices apply the new concepts

Evolutionary Acquisition is facilitated by MOSA